Chemistry of 1,5-Diketones: II.* Specificity of Transformations of Polycyclic 1,5-Diketones in Acid Media

N. V. Pchelintseva, Ya. G. Kolevatova, L. I. Markova, O. V. Fedotova, and P. V. Reshetov

Chernyshevskii Saratov State University, ul. Astrakhanskaya 83, Saratov, 410012 Russia e-mail: KolevatovaJG@mail.ru

Received October 6, 2007

Abstract—2-(1,3-Diaryl-3-oxopropyl)cyclohexan-1-ones underwent carbo- and heterocyclization in a mixture of acetic acid with acetic anhydride in the presence of perchloric acid. The transformation of 2-(1,3-diaryl-3-oxopropyl)cyclohexan-1-ones into 2,4-diaryl-5,6,7,8-tetrahydrochromenylium salts was shown to involve intermediate 2,4-diarylbicyclo[3.3.1]non-2-en-9-ones. The structure of 2,4-diaryl-substituted bicyclo[3.3.1]non-2-en-9-ones and products of their reactions with halogens and hydroxylamine hydrochloride was confirmed by ¹H and ¹³C NMR spectroscopy.

DOI: 10.1134/S1070428008090030

We previously reported [1] on the halogenation of acyclic 1,5-diketones and their fused analogs. In continuation of our studies on the properties of 1,5-dicarbonyl compounds we examined their behavior in acid media. It is known that 2-(1,3-diaryl-3-oxopropyl)cyclohexan-1-ones I under acidic conditions undergo intramolecular heterocyclization to give tetrahydrochromenylium salts and that their carbocyclization produces bridged bicyclic ketones. For example, diaryl-substituted 1,5-diketones I react with boron trifluoride-ether complex or with dry hydrogen chloride in acetic acid, yielding tetrahydrochromenylium tetrafluoroborates or chlorides, respectively [2, 3]. Bicyclo-[3.2.1]oct-2-en-8-ones and bicyclo[3.3.1]non-2-en-9ones were formed as the major products when 2-(1,3-diaryl-3-oxopropyl)cyclopentan- and -cyclohexan-1-ones were heated in boiling acetic acid in the presence of hydrochloric acid [4, 5] (Scheme 1).

By heating 2-(1,3-diaryl-3-oxopropyl)cyclohexan-1-ones **Ia–Ic** with perchloric acid in a mixture of acetic acid and acetic anhydride we obtained for the first time mixtures of the corresponding 2,4-diaryl-5,6,7,8-tetrahydrochromenylium perchlorates **IIa–IIIc** and 2,4-diarylbicyclo[3.3.1]non-2-en-9-ones **IIIa–IIIc** at different ratios (Scheme 2, see table). The reaction at low temperature gives mainly bicyclononenones **IIIa** and **IIIb**; raising the temperature to 100°C reduces the yield of compounds **III**, while the yield of chromenylium salts **II** attains 60%.

It was presumed previously [6] that tetrahydrochromenylium salts are formed in reactions of 2-(1,3-diaryl-3-oxopropyl)cyclohexan-1-ones with acid reagents through intermediate tetrahydrochromenes [6]. Our results suggest that the process under study is mediated by bicyclo[3.3.1]non-2-en-9-ones **III**. In fact, compounds **IIIa** and **IIIb** were converted into the corresponding tetrahydrochromenylium perchlorates **IIa** and **IIb** in almost quantitative yield on heating in AcOH–Ac₂O in the presence of HClO₄. A probable mechanism involves protonation of the

^{*} For communication I, see [1].

carbonyl group in ketone III, opening of the unsaturated carbocycle, and subsequent heterocyclization to hexahydrochromene **B**. Deprotonation of **B** gives tetrahydrochromene **C** (Scheme 3), and the latter is transformed into tetrahydrochromenylium salt according to the known mechanism [6]. If the substituent at the double bond (Ar^1) in bicyclo[3.3.1]non-2-en-9-one III possesses electron-donating properties, the salt formation is hindered because of positive charge delocalization in carbenium ion **A**.

Although bridged unsaturated ketone III (n = 0, $Ar^1 = Ar^2 = Ph$) was synthesized for the first time as early as almost 100 years ago [7] by passing hydrogen chloride through a solution of 2-(3-oxo-1,3-diphenyl-propyl)cyclopentan-1-one in alcohol, published data on the structure and reactivity of such bicyclic systems are very scarce. As noted in [5], bicycloalkenones like III having more than five carbon atoms in the ring are stable. The structure of ketones III was determined on the basis of the IR data [8, 9], and the position of the double C=C bond was proved by ¹H NMR spectroscopy [10]. Such reactions of ketone III as hydrogenation over palladium catalyst [8], reduction with lithium

Yields of hetero- and carbocyclization products from carbonyl compounds **Ia–Ic**, **IIIa**, and **IIIb**

Initial com- pound no.	Temperature, °C	Product (yield, %)	
Ia	0	IIa (0)	IIIa (16)
Ia	20	Ha (10)	IIIa (73)
Ia	100	Ha (27)	IIIa (63)
Ib	20	IIb (43)	IIIb (34)
Ib	100	IIb (60)	IIIb (10)
Ic	100	Hc (14)	IIIc (64)
IIIa	100	Ha (90)	_
IIIb	100	IIb (92)	_

tetrahydridoaluminate [9], and reaction with hypophosphorous acid [10] were reported.

The spectral parameters of compounds **IIIa–IIIc** were consistent with the assumed structure.

We also examined the relative reactivities of different reaction centers in unsaturated ketones **IIIa** and **IIIb** toward electrophilic and nucleophilic reagents. Halogenation of compound **IIIa** with chlorine or bromine in carbon tetrachloride at room temperature smoothly afforded the corresponding halogen-substituted bicyclononanones **IVa** and **Va**, indicating that the bicyclic skeleton is stable under these conditions. By

NH₂OH, EtOH

treatment of ketone **IIIb** with hydroxylamine in ethanol we obtained oxime **VIb** (Scheme 4). The structure of halogenated ketones **IVa** and **Va** and oxime **VIb** was confirmed by the IR and ¹³C NMR spectra.

Illa, Illb

EXPERIMENTAL

The ¹H and ¹³C NMR spectra were recorded on a Bruker MSL-400 spectrometer from solutions in chloroform-*d* or DMSO- d_6 using hexamethyldisiloxane as internal reference. The IR spectra were measured on a Specord M-80 spectrometer from samples dispersed in mineral oil or hexachlorobutadiene. The progress of reactions and the purity of products were monitored by thin-layer chromatography on Silufol UV-254 plates using hexane–diethyl ether–chloroform (4:1:1) as eluent; spots were detected by treatment with iodine vapor. Initial 1,5-diketones **Ia–Ic** were synthesized according to the procedure described in [4].

Reaction of 2-(1,3-diaryl-3-oxopropyl)cyclohexan-1-ones Ia–Ic with perchloric acid. Perchloric acid ($d = 1.69 \text{ g/cm}^3$), 0.7 ml (0.012 mol), was added under continuous stirring to a mixture of 0.005 mol of compound Ia–Ic, 5.5 ml of glacial acetic acid, and 1 ml of acetic anhydride. The mixture was stirred at room temperature or on heating until the conversion of the initial diketone was complete, evaporated by half, and poured into 150 ml of diethyl ether. The precipitate was filtered off, washed with diethyl ether, and dried. We thus isolated 2,4-diaryl-5,6,7,8-tetrahydrochromenylium perchlorates IIa–IIc. Perchlorate IIa was identified by the melting point [11]. The filtrate was evaporated, and the precipitate of bicyclo[3.3.1]non-2en-9-one **IIIa–IIIc** was filtered off, washed with ethanol, and dried. The yields are given in table.

Va

C₆H₄OMe-4

Ph VIb

4-(4'-Methoxyphenyl)-2-phenyl-5,6,7,8-tetrahydrochromenylium perchlorate (IIb). Red crystals, mp 196–198°C (reprecipitated from CHCl₃ into Et₂O). IR spectrum, v, cm⁻¹: 2936 (CH₂), 2855 (OCH₃), 1540 (pyrylium), 1092 (ClO₄). Found, %: C 61.94; H 5.40; Cl 8.10. $C_{23}H_{23}ClO_7$. Calculated, %: C 61.82; H 5.19; Cl 7.93.

2-(4'-Methoxyphenyl)-4-phenyl-5,6,7,8-tetrahydrochromenylium perchlorate (IIc). Red–brown crystals, mp 204–206°C (reprecipitated from CHCl₃ into Et₂O). IR spectrum, v, cm⁻¹: 2938 (CH₂), 2855 (OCH₃), 1540 (pyrylium), 1090 (ClO₄). Found, %: C 62.24; H 5.30; Cl 8.00. C₂₃H₂₃ClO₇. Calculated, %: C 61.82; H 5.19; Cl 7.93.

2,4-Diphenylbicyclo[**3.3.1**]non-2-en-9-one (IIIa). Colorless crystals, mp 144.5–145.5°C (from AcOH–Ac₂O, 5:1). IR spectrum, v, cm⁻¹: 2947 (CH₂), 1712 (C=O), 1657 (C=C). ¹H NMR spectrum, δ , ppm: 2.58–2.81 m (6H, CH₂), 5.51 s (1H, 4-H), 7.70–6.90 m (10H, H_{arom}), 7.86 s (1H, 3-H). ¹³C NMR spectrum, δ_{C} , ppm: 16.91 (C⁷), 29.84 (C⁸), 31.74 (C⁶), 47.72 (C⁵), 48.70 (C¹), 49.95 (C⁴), 125.61 (C³), 126.53–128.48 (C_{arom}), 140.46 (C²), 212.9 (C⁹). Found, %: C 87.62; H 7.11. C₂₁H₂₀O. Calculated, %: C 87.50; H 6.94.

4-(4'-Methoxyphenyl)-2-phenylbicyclo[3.3.1]non-2-en-9-one (IIIb). Colorless crystals, mp 171– 172°C (from AcOH–Ac₂O, 5:1). IR spectrum, v, cm⁻¹: 2934 (CH₂), 2852 (OCH₃), 1715 (C=O), 1654 (C=C). ¹H NMR spectrum, δ , ppm: 2.21–1.30 m (6H, CH₂), 3.97 s (3H, OCH₃), 6.32 s (1H, 4-H), 7.76 s (1H, 3-H), 8.77–8.12 m (9H, H_{arom}). ¹³C NMR spectrum, δ_{C} , ppm: 17.02 (C⁷), 29.71 (C⁸), 31.74 (C⁶), 47.76 (C⁵), 48.78 (C¹), 49.87 (C⁴), 59.92 (CH₃), 125.5–128.5 (C_{arom}), 126.24 (C³), 140.56 (C²), 158.93 (C⁴), 213.12 (C⁹). Found, %: C 83.82; H 7.51. C₂₂H₂₂O₂. Calculated, %: C 82.88; H 6.96.

2-(4'-Methoxyphenyl)-4-phenylbicyclo[3.3.1]non-2-en-9-one (IIIc). Colorless crystals, mp 128.5– 129°C (from AcOH–Ac₂O, 5:1). IR spectrum, v, cm⁻¹: 2940 (CH₂), 2855 (OCH₃), 1710 (C=O), 1660 (C=C). ¹H NMR spectrum, δ , ppm: 1.36–2.09 m (6H, CH₂), 3.53 s (3H, OCH₃), 6.52 s (1H, 4-H), 7.49 s (1H, 3-H), 7.26–7.57 m (9H, H_{arom}). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 17.26 (C⁷), 29.74 (C⁸), 31.63 (C⁶), 47.61 (C⁵), 48.82 (C¹), 49.76 (C⁴), 54.85 (CH₃), 126.16–130.53 (C_{arom}), 136.9 (C³), 141.0 (C²), 158.9 (C^{4'}), 213.0 (C⁹). Found, %: C 83.16; H 6.86. C₂₂H₂₂O₂. Calculated, %: C 82.88; H 6.96.

2,4-Diphenyl-5,6,7,8-tetrahydrochromenylium perchlorate (IIa). Perchloric acid, 1.2 g (0.7 ml, 0.012 mol), was added dropwise to a solution of 1.44 g (0.005 mol) of compound **IIIa** in a mixture of 5.5 ml of glacial acetic acid and 1.1 ml of acetic anhydride. The mixture was heated for 14 h at 100°C, evaporated by half, and poured into 50 ml of diethyl ether. The precipitate was filtered off, washed with diethyl ether, and dried. Yield 90%; the product was identified by the melting point [11].

1,2,3,5-Tetrachloro-2,4-diphenylbicyclo[3.3.1]nonan-9-one (IVa). A solution of 1.5 g (0.0052 mol) of compound IIIa in carbon tetrachloride was saturated with gaseous chlorine over a period of 3.5 h at room temperature. The solution was cooled, and the precipitate was filtered off. Yield 1.0 g (43%), colorless crystals, mp 98–99°C (from *i*-PrOH). IR spectrum, v, cm⁻¹: 2940 (CH₂), 1720 (C=O), 680–630 (C–Cl). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 26.14 (C⁷), 30.41 (C⁸), 30.49 (C⁶), 39.66 (C⁵), 40.31 (C¹), 46.31 (C⁴), 51.34 (C³), 51.45 (C²), 128.47–136.84 (C_{arom}), 201.10 (C⁹). Found, %: C 56.88; H 4.84; Cl 31.93. C₂₁H₁₈Cl₄O. Calculated, %: C 58.91; H 4.24; Cl 33.12.

2,3-Dibromo-2,4-diphenylbicyclo[3.3.1]nonan-9-one (Va). A solution of 3.7 ml (1.2 g, 0.0076 mol) of bromine in 7 ml of carbon tetrachloride was added

dropwise over a period of 0.5 h under stirring at room temperature to a solution of 2.0 g (0.0064 mol) of compound **IIIa** in carbon tetrachloride. The solution was partially evaporated and cooled, and the precipitate was filtered off. Yield 2.0 g (64%), colorless crystals, mp 167.5–168°C (from EtOH). IR spectrum, v, cm⁻¹: 2955 (CH₂); 1722 (C=O); 691, 520 (C–Br). Found, %: C 56.88; H 4.80; Br 36.13. C₂₁H₂₀Br₂O. Calculated, %: C 56.28; H 4.50; Br 35.66.

4-(4'-Methoxyphenyl)-2-phenylbicyclo[3.3.1]non-2-en-9-one oxime (VIb). A solution of 0.25 g (0.8 mmol) of compound **IIIb** and 0.14 g (2.1 mmol) of hydroxylamine hydrochloride in 10 ml of anhydrous ethanol was heated for 3.5 h on a boiling water bath. The solution was cooled, and the precipitate was filtered off. Yield 0.15 g (58%), colorless crystals, mp 214–215°C (from EtOH). IR spectrum, v, cm⁻¹: 2920 (CH₂); 2860, 2840 (NOH); 1620 (C=C); 1040 (OCH₃). Found, %: N 3.65. C₂₁H₂₃NO. Calculated, %: N 4.20.

This study was performed under financial support by the Russian Foundation for Basic Research (project no. 06-03-32667a).

REFERENCES

- 1. Pchelintseva, N.V., Tsimbalenko, D.A., and Fedotova, O.V., Russ. J. Org. Chem., 2007, vol. 43, p. 1285.
- Kharchenko, V.G., Klimenko, S.K., Berezhnaya, M.N., and Evtushenko, I.Ya., *Zh. Org. Khim.*, 1974, vol. 10, p. 1302.
- Klimenko, S.K., Yartseva, N.M., Berezhnaya, M.N., Stankevich, M.E., and Kharchenko, V.G., *Zh. Org. Khim.*, 1974, vol. 10, p. 2206.
- 4. Merchaut, J.R., Menta, J.B., and Desai, I.B., *Indian J. Chem.*, 1965, vol. 3, p. 561.
- Summour, A., Rouf, A., Elkasaby, M., and Ibrahim, M., Acta Chim. Acad. Sci. Hung., 1973, vol. 78, p. 399.
- Balaban, A.T., New Trends in Heterocyclic Chemistry, Mitra, R.B. and Tilak, B.D., Eds., Amsterdam: Elsevier, 1979, p. 79.
- 7. Stobbe, H., J. Prakt. Chem., 1912, vol. 86, p. 218.
- Kharchenko, V.G., Smirnova, N.S., and Rybina, G.I., *Zh. Org. Khim.*, 1990, vol. 26, p. 2527.
- Batocchi, L. and Giannangeli, M., Ann. Chim., 1970, vol. 60, p. 3405.
- 10. Barbulescu, N., Moranu, M., and Sotca, D., *Rev. Roum. Chim.*, 1973, vol. 18, p. 873.
- 11. Reynolds, G.A. and van All, J.A., *J. Org. Chem.*, 1969, vol. 34, p. 2736.